EconPapers    
Economics at your fingertips  
 

Generative Ornstein-Uhlenbeck Markets via Geometric Deep Learning

Anastasis Kratsios and Cody Hyndman

Papers from arXiv.org

Abstract: We consider the problem of simultaneously approximating the conditional distribution of market prices and their log returns with a single machine learning model. We show that an instance of the GDN model of Kratsios and Papon (2022) solves this problem without having prior assumptions on the market's "clipped" log returns, other than that they follow a generalized Ornstein-Uhlenbeck process with a priori unknown dynamics. We provide universal approximation guarantees for these conditional distributions and contingent claims with a Lipschitz payoff function.

Date: 2023-02
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2302.09176 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2302.09176

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2302.09176