EconPapers    
Economics at your fingertips  
 

Does Machine Learning Amplify Pricing Errors in the Housing Market? -- The Economics of Machine Learning Feedback Loops

Nikhil Malik and Emaad Manzoor

Papers from arXiv.org

Abstract: Machine learning algorithms are increasingly employed to price or value homes for sale, properties for rent, rides for hire, and various other goods and services. Machine learning-based prices are typically generated by complex algorithms trained on historical sales data. However, displaying these prices to consumers anchors the realized sales prices, which will in turn become training samples for future iterations of the algorithms. The economic implications of this machine learning "feedback loop" - an indirect human-algorithm interaction - remain relatively unexplored. In this work, we develop an analytical model of machine learning feedback loops in the context of the housing market. We show that feedback loops lead machine learning algorithms to become overconfident in their own accuracy (by underestimating its error), and leads home sellers to over-rely on possibly erroneous algorithmic prices. As a consequence at the feedback loop equilibrium, sale prices can become entirely erratic (relative to true consumer preferences in absence of ML price interference). We then identify conditions (choice of ML models, seller characteristics and market characteristics) where the economic payoffs for home sellers at the feedback loop equilibrium is worse off than no machine learning. We also empirically validate primitive building blocks of our analytical model using housing market data from Zillow. We conclude by prescribing algorithmic corrective strategies to mitigate the effects of machine learning feedback loops, discuss the incentives for platforms to adopt these strategies, and discuss the role of policymakers in regulating the same.

Date: 2023-02
New Economics Papers: this item is included in nep-big, nep-cmp, nep-dcm and nep-ure
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2302.09438 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2302.09438

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2302.09438