Enhancing Energy System Models Using Better Load Forecasts
Thomas M\"obius,
Mira Watermeyer,
Oliver Grothe and
Felix M\"usgens
Papers from arXiv.org
Abstract:
Energy system models require a large amount of technical and economic data, the quality of which significantly influences the reliability of the results. Some of the variables on the important data source ENTSO-E transparency platform, such as transmission system operators' day-ahead load forecasts, are known to be biased. These biases and high errors affect the quality of energy system models. We propose a simple time series model that does not require any input variables other than the load forecast history to significantly improve the transmission system operators' load forecast data on the ENTSO-E transparency platform in real-time, i.e., we successively improve each incoming data point. We further present an energy system model developed specifically for the short-term day-ahead market. We show that the improved load data as inputs reduce pricing errors of the model, with strong reductions particularly in times when prices are high and the market is tight.
Date: 2023-02
New Economics Papers: this item is included in nep-ene
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2302.11017 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2302.11017
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().