Wasserstein-Kelly Portfolios: A Robust Data-Driven Solution to Optimize Portfolio Growth
Jonathan Yu-Meng Li
Papers from arXiv.org
Abstract:
We introduce a robust variant of the Kelly portfolio optimization model, called the Wasserstein-Kelly portfolio optimization. Our model, taking a Wasserstein distributionally robust optimization (DRO) formulation, addresses the fundamental issue of estimation error in Kelly portfolio optimization by defining a ``ball" of distributions close to the empirical return distribution using the Wasserstein metric and seeking a robust log-optimal portfolio against the worst-case distribution from the Wasserstein ball. Enhancing the Kelly portfolio using Wasserstein DRO is a natural step to take, given many successful applications of the latter in areas such as machine learning for generating robust data-driven solutions. However, naive application of Wasserstein DRO to the growth-optimal portfolio problem can lead to several issues, which we resolve through careful modelling. Our proposed model is both practically motivated and efficiently solvable as a convex program. Using empirical financial data, our numerical study demonstrates that the Wasserstein-Kelly portfolio can outperform the Kelly portfolio in out-of-sample testing across multiple performance metrics and exhibits greater stability.
Date: 2023-02
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2302.13979 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2302.13979
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().