Bicriteria Multidimensional Mechanism Design with Side Information
Maria-Florina Balcan,
Siddharth Prasad and
Tuomas Sandholm
Papers from arXiv.org
Abstract:
We develop a versatile methodology for multidimensional mechanism design that incorporates side information about agents to generate high welfare and high revenue simultaneously. Side information sources include advice from domain experts, predictions from machine learning models, and even the mechanism designer's gut instinct. We design a tunable mechanism that integrates side information with an improved VCG-like mechanism based on weakest types, which are agent types that generate the least welfare. We show that our mechanism, when carefully tuned, generates welfare and revenue competitive with the prior-free total social surplus, and its performance decays gracefully as the side information quality decreases. We consider a number of side information formats including distribution-free predictions, predictions that express uncertainty, agent types constrained to low-dimensional subspaces of the ambient type space, and the traditional setting with known priors over agent types. In each setting we design mechanisms based on weakest types and prove performance guarantees.
Date: 2023-02, Revised 2024-10
New Economics Papers: this item is included in nep-des and nep-mic
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2302.14234 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2302.14234
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().