EconPapers    
Economics at your fingertips  
 

Predicting Stock Price Movement as an Image Classification Problem

Matej Steinbacher

Papers from arXiv.org

Abstract: The paper studies intraday price movement of stocks that is considered as an image classification problem. Using a CNN-based model we make a compelling case for the high-level relationship between the first hour of trading and the close. The algorithm managed to adequately separate between the two opposing classes and investing according to the algorithm's predictions outperformed all alternative constructs but the theoretical maximum. To support the thesis, we ran several additional tests. The findings in the paper highlight the suitability of computer vision techniques for studying financial markets and in particular prediction of stock price movements.

Date: 2023-03
New Economics Papers: this item is included in nep-cmp and nep-fmk
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2303.01111 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2303.01111

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2303.01111