EconPapers    
Economics at your fingertips  
 

Constructing High Frequency Economic Indicators by Imputation

Serena Ng and Susannah Scanlan

Papers from arXiv.org

Abstract: Monthly and weekly economic indicators are often taken to be the largest common factor estimated from high and low frequency data, either separately or jointly. To incorporate mixed frequency information without directly modeling them, we target a low frequency diffusion index that is already available, and treat high frequency values as missing. We impute these values using multiple factors estimated from the high frequency data. In the empirical examples considered, static matrix completion that does not account for serial correlation in the idiosyncratic errors yields imprecise estimates of the missing values irrespective of how the factors are estimated. Single equation and systems-based dynamic procedures that account for serial correlation yield imputed values that are closer to the observed low frequency ones. This is the case in the counterfactual exercise that imputes the monthly values of consumer sentiment series before 1978 when the data was released only on a quarterly basis. This is also the case for a weekly version of the CFNAI index of economic activity that is imputed using seasonally unadjusted data. The imputed series reveals episodes of increased variability of weekly economic information that are masked by the monthly data, notably around the 2014-15 collapse in oil prices.

Date: 2023-03, Revised 2023-10
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://arxiv.org/pdf/2303.01863 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2303.01863

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2303.01863