Bayesian CART models for insurance claims frequency
Yaojun Zhang,
Lanpeng Ji,
Georgios Aivaliotis and
Charles Taylor
Papers from arXiv.org
Abstract:
Accuracy and interpretability of a (non-life) insurance pricing model are essential qualities to ensure fair and transparent premiums for policy-holders, that reflect their risk. In recent years, the classification and regression trees (CARTs) and their ensembles have gained popularity in the actuarial literature, since they offer good prediction performance and are relatively easily interpretable. In this paper, we introduce Bayesian CART models for insurance pricing, with a particular focus on claims frequency modelling. Additionally to the common Poisson and negative binomial (NB) distributions used for claims frequency, we implement Bayesian CART for the zero-inflated Poisson (ZIP) distribution to address the difficulty arising from the imbalanced insurance claims data. To this end, we introduce a general MCMC algorithm using data augmentation methods for posterior tree exploration. We also introduce the deviance information criterion (DIC) for the tree model selection. The proposed models are able to identify trees which can better classify the policy-holders into risk groups. Some simulations and real insurance data will be discussed to illustrate the applicability of these models.
Date: 2023-03, Revised 2023-12
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2303.01923 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2303.01923
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().