Censored Quantile Regression with Many Controls
Seoyun Hong
Papers from arXiv.org
Abstract:
This paper develops estimation and inference methods for censored quantile regression models with high-dimensional controls. The methods are based on the application of double/debiased machine learning (DML) framework to the censored quantile regression estimator of Buchinsky and Hahn (1998). I provide valid inference for low-dimensional parameters of interest in the presence of high-dimensional nuisance parameters when implementing machine learning estimators. The proposed estimator is shown to be consistent and asymptotically normal. The performance of the estimator with high-dimensional controls is illustrated with numerical simulation and an empirical application that examines the effect of 401(k) eligibility on savings.
Date: 2023-03
New Economics Papers: this item is included in nep-big, nep-cmp and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2303.02784 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2303.02784
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().