EnsembleIV: Creating Instrumental Variables from Ensemble Learners for Robust Statistical Inference
Gordon Burtch,
Edward McFowland,
Mochen Yang and
Gediminas Adomavicius
Papers from arXiv.org
Abstract:
Despite increasing popularity in empirical studies, the integration of machine learning generated variables into regression models for statistical inference suffers from the measurement error problem, which can bias estimation and threaten the validity of inferences. In this paper, we develop a novel approach to alleviate associated estimation biases. Our proposed approach, EnsembleIV, creates valid and strong instrumental variables from weak learners in an ensemble model, and uses them to obtain consistent estimates that are robust against the measurement error problem. Our empirical evaluations, using both synthetic and real-world datasets, show that EnsembleIV can effectively reduce estimation biases across several common regression specifications, and can be combined with modern deep learning techniques when dealing with unstructured data.
Date: 2023-03, Revised 2024-12
New Economics Papers: this item is included in nep-big and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2303.02820 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2303.02820
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().