EconPapers    
Economics at your fingertips  
 

Reconciling rough volatility with jumps

Eduardo Abi Jaber and Nathan De Carvalho

Papers from arXiv.org

Abstract: We reconcile rough volatility models and jump models using a class of reversionary Heston models with fast mean reversions and large vol-of-vols. Starting from hyper-rough Heston models with a Hurst index $H \in (-1/2,1/2)$, we derive a Markovian approximating class of one dimensional reversionary Heston-type models. Such proxies encode a trade-off between an exploding vol-of-vol and a fast mean-reversion speed controlled by a reversionary time-scale $\epsilon>0$ and an unconstrained parameter $H \in \mathbb R$. Sending $\epsilon$ to 0 yields convergence of the reversionary Heston model towards different explicit asymptotic regimes based on the value of the parameter H. In particular, for $H \leq -1/2$, the reversionary Heston model converges to a class of L\'evy jump processes of Normal Inverse Gaussian type. Numerical illustrations show that the reversionary Heston model is capable of generating at-the-money skews similar to the ones generated by rough, hyper-rough and jump models.

Date: 2023-03, Revised 2024-09
New Economics Papers: this item is included in nep-des and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://arxiv.org/pdf/2303.07222 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2303.07222

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-27
Handle: RePEc:arx:papers:2303.07222