Tight Non-asymptotic Inference via Sub-Gaussian Intrinsic Moment Norm
Huiming Zhang,
Haoyu Wei and
Guang Cheng
Papers from arXiv.org
Abstract:
In non-asymptotic learning, variance-type parameters of sub-Gaussian distributions are of paramount importance. However, directly estimating these parameters using the empirical moment generating function (MGF) is infeasible. To address this, we suggest using the sub-Gaussian intrinsic moment norm [Buldygin and Kozachenko (2000), Theorem 1.3] achieved by maximizing a sequence of normalized moments. Significantly, the suggested norm can not only reconstruct the exponential moment bounds of MGFs but also provide tighter sub-Gaussian concentration inequalities. In practice, we provide an intuitive method for assessing whether data with a finite sample size is sub-Gaussian, utilizing the sub-Gaussian plot. The intrinsic moment norm can be robustly estimated via a simple plug-in approach. Our theoretical findings are also applicable to reinforcement learning, including the multi-armed bandit scenario.
Date: 2023-03, Revised 2024-01
New Economics Papers: this item is included in nep-des
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2303.07287 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2303.07287
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().