Economics at your fingertips  

Probabilistic forecasting with Factor Quantile Regression: Application to electricity trading

Katarzyna Maciejowska, Tomasz Serafin and Bartosz Uniejewski

Papers from

Abstract: This paper presents a novel approach for constructing probabilistic forecasts, which combines both the Quantile Regression Averaging (QRA) method and the Principal Component Analysis (PCA) averaging scheme. The performance of the approach is evaluated on datasets from two European energy markets - the German EPEX SPOT and the Polish Power Exchange (TGE). The results indicate that newly proposed solutions yield results, which are more accurate than the literature benchmarks. Additionally, empirical evidence indicates that the proposed method outperforms its competitors in terms of the empirical coverage and the Christoffersen test. In addition, the economic value of the probabilistic forecast is evaluated on the basis of financial metrics. We test the performance of forecasting models taking into account a day-ahead market trading strategy that utilizes probabilistic price predictions and an energy storage system. The results indicate that profits of up to 10 EUR per 1 MWh transaction can be obtained when predictions are generated using the novel approach.

Date: 2023-03
New Economics Papers: this item is included in nep-ene and nep-for
References: Add references at CitEc
Citations: Track citations by RSS feed

Downloads: (external link) Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this paper

More papers in Papers from
Bibliographic data for series maintained by arXiv administrators ().

Page updated 2023-06-15
Handle: RePEc:arx:papers:2303.08565