Deep Calibration With Artificial Neural Network: A Performance Comparison on Option Pricing Models
Young Shin Kim,
Hyangju Kim and
Jaehyung Choi
Papers from arXiv.org
Abstract:
This paper explores Artificial Neural Network (ANN) as a model-free solution for a calibration algorithm of option pricing models. We construct ANNs to calibrate parameters for two well-known GARCH-type option pricing models: Duan's GARCH and the classical tempered stable GARCH that significantly improve upon the limitation of the Black-Scholes model but have suffered from computation complexity. To mitigate this technical difficulty, we train ANNs with a dataset generated by Monte Carlo Simulation (MCS) method and apply them to calibrate optimal parameters. The performance results indicate that the ANN approach consistently outperforms MCS and takes advantage of faster computation times once trained. The Greeks of options are also discussed.
Date: 2023-03
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2303.08760 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2303.08760
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().