EconPapers    
Economics at your fingertips  
 

Synthetic Combinations: A Causal Inference Framework for Combinatorial Interventions

Abhineet Agarwal, Anish Agarwal and Suhas Vijaykumar

Papers from arXiv.org

Abstract: Consider a setting where there are $N$ heterogeneous units and $p$ interventions. Our goal is to learn unit-specific potential outcomes for any combination of these $p$ interventions, i.e., $N \times 2^p$ causal parameters. Choosing a combination of interventions is a problem that naturally arises in a variety of applications such as factorial design experiments, recommendation engines, combination therapies in medicine, conjoint analysis, etc. Running $N \times 2^p$ experiments to estimate the various parameters is likely expensive and/or infeasible as $N$ and $p$ grow. Further, with observational data there is likely confounding, i.e., whether or not a unit is seen under a combination is correlated with its potential outcome under that combination. To address these challenges, we propose a novel latent factor model that imposes structure across units (i.e., the matrix of potential outcomes is approximately rank $r$), and combinations of interventions (i.e., the coefficients in the Fourier expansion of the potential outcomes is approximately $s$ sparse). We establish identification for all $N \times 2^p$ parameters despite unobserved confounding. We propose an estimation procedure, Synthetic Combinations, and establish it is finite-sample consistent and asymptotically normal under precise conditions on the observation pattern. Our results imply consistent estimation given $\text{poly}(r) \times \left( N + s^2p\right)$ observations, while previous methods have sample complexity scaling as $\min(N \times s^2p, \ \ \text{poly(r)} \times (N + 2^p))$. We use Synthetic Combinations to propose a data-efficient experimental design. Empirically, Synthetic Combinations outperforms competing approaches on a real-world dataset on movie recommendations. Lastly, we extend our analysis to do causal inference where the intervention is a permutation over $p$ items (e.g., rankings).

Date: 2023-03, Revised 2024-01
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2303.14226 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2303.14226

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2303.14226