Mean-variance hybrid portfolio optimization with quantile-based risk measure
Weiping Wu,
Yu Lin,
Jianjun Gao and
Ke Zhou
Papers from arXiv.org
Abstract:
This paper addresses the importance of incorporating various risk measures in portfolio management and proposes a dynamic hybrid portfolio optimization model that combines the spectral risk measure and the Value-at-Risk in the mean-variance formulation. By utilizing the quantile optimization technique and martingale representation, we offer a solution framework for these issues and also develop a closed-form portfolio policy when all market parameters are deterministic. Our hybrid model outperforms the classical continuous-time mean-variance portfolio policy by allocating a higher position of the risky asset in favorable market states and a less risky asset in unfavorable market states. This desirable property leads to promising numerical experiment results, including improved Sortino ratio and reduced downside risk compared to the benchmark models.
Date: 2023-03, Revised 2023-04
New Economics Papers: this item is included in nep-fmk and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2303.15830 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2303.15830
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().