On the number of terms in the COS method for European option pricing
Gero Junike
Papers from arXiv.org
Abstract:
The Fourier-cosine expansion (COS) method is used to price European options numerically in a very efficient way. To apply the COS method, one has to specify two parameters: a truncation range for the density of the log-returns and a number of terms N to approximate the truncated density by a cosine series. How to choose the truncation range is already known. Here, we are able to find an explicit and useful bound for N as well for pricing and for the sensitivities, i.e., the Greeks Delta and Gamma, provided the density of the log-returns is smooth. We further show that the COS method has an exponential order of convergence when the density is smooth and decays exponentially. However, when the density is smooth and has heavy tails, as in the Finite Moment Log Stable model, the COS method does not have exponential order of convergence. Numerical experiments confirm the theoretical results.
Date: 2023-03, Revised 2024-03
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://arxiv.org/pdf/2303.16012 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2303.16012
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).