EconPapers    
Economics at your fingertips  
 

A multifractional option pricing formula

Axel A. Araneda

Papers from arXiv.org

Abstract: Fractional Brownian motion has become a standard tool to address long-range dependence in financial time series. However, a constant memory parameter is too restrictive to address different market conditions. Here we model the price fluctuations using a multifractional Brownian motion assuming that the Hurst exponent is a time-deterministic function. Through the multifractional Ito calculus, both the related transition density function and the analytical European Call option pricing formula are obtained. The empirical performance of the multifractional Black-Scholes model is tested by calibration of option market quotes for the SPX index and offers best fit than its counterparts based on standard and fractional Brownian motions.

Date: 2023-03, Revised 2024-06
References: View references in EconPapers View complete reference list from CitEc
Citations:

Published in Fluctuation and Noise Letters, 2024

Downloads: (external link)
http://arxiv.org/pdf/2303.16314 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2303.16314

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2303.16314