Inference on eigenvectors of non-symmetric matrices
Jerome R. Simons
Papers from arXiv.org
Abstract:
This paper argues that the symmetrisability condition in Tyler (1981) is not necessary to establish asymptotic inference procedures for eigenvectors. We establish distribution theory for a Wald and t-test for full-vector and individual coefficient hypotheses, respectively. Our test statistics originate from eigenprojections of non-symmetric matrices. Representing projections as a mapping from the underlying matrix to its spectral data, we find derivatives through analytic perturbation theory. These results demonstrate how the analytic perturbation theory of Sun (1991) is a useful tool in multivariate statistics and are of independent interest. As an application, we define confidence sets for Bonacich centralities estimated from adjacency matrices induced by directed graphs.
Date: 2023-03, Revised 2023-04
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2303.18233 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2303.18233
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().