Hypothesis testing on invariant subspaces of non-symmetric matrices with applications to network statistics
J\'er\^ome R. Simons
Papers from arXiv.org
Abstract:
We extend the inference procedure for eigenvectors of Tyler (1981), which assumes symmetrizable matrices to generic invariant and singular subspaces of non-diagonalisable matrices to test whether $\nu \in \mathbb{R}^{p \times r}$ is an element of an invariant subspace of $M \in \mathbb{R}^{p \times p}$. Our results include a Wald test for full-vector hypotheses and a $t$-test for coefficient-wise hypotheses. We employ perturbation expansions of invariant subspaces from Sun (1991) and singular subspaces from Liu et al. (2007). Based on the former, we extend the popular Davis-Kahan bound to estimations of its higher-order polynomials and study how the bound simplifies for eigenspaces but attains complexity for generic invariant subspaces.
Date: 2023-03, Revised 2025-05
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2303.18233 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2303.18233
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().