IV Regressions without Exclusion Restrictions
Wayne Gao and
Rui Wang
Papers from arXiv.org
Abstract:
We study identification and estimation of endogenous linear and nonlinear regression models without excluded instrumental variables, based on the standard mean independence condition and a nonlinear relevance condition. Based on the identification results, we propose two semiparametric estimators as well as a discretization-based estimator that does not require any nonparametric regressions. We establish their asymptotic normality and demonstrate via simulations their robust finite-sample performances with respect to exclusion restrictions violations and endogeneity. Our approach is applied to study the returns to education, and to test the direct effects of college proximity indicators as well as family background variables on the outcome.
Date: 2023-04, Revised 2023-07
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2304.00626 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2304.00626
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().