Optimal Trading in Automatic Market Makers with Deep Learning
Sebastian Jaimungal,
Yuri F. Saporito,
Max O. Souza and
Yuri Thamsten
Papers from arXiv.org
Abstract:
This article explores the optimisation of trading strategies in Constant Function Market Makers (CFMMs) and centralised exchanges. We develop a model that accounts for the interaction between these two markets, estimating the conditional dependence between variables using the concept of conditional elicitability. Furthermore, we pose an optimal execution problem where the agent hides their orders by controlling the rate at which they trade. We do so without approximating the market dynamics. The resulting dynamic programming equation is not analytically tractable, therefore, we employ the deep Galerkin method to solve it. Finally, we conduct numerical experiments and illustrate that the optimal strategy is not prone to price slippage and outperforms na\"ive strategies.
Date: 2023-04
New Economics Papers: this item is included in nep-cmp, nep-fmk and nep-mst
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2304.02180 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2304.02180
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().