EconPapers    
Economics at your fingertips  
 

Robust optimized certainty equivalents and quantiles for loss positions with distribution uncertainty

Weiwei Li and Dejian Tian

Papers from arXiv.org

Abstract: The paper investigates the robust optimized certainty equivalents and analyzes the relevant properties of them as risk measures for loss positions with distribution uncertainty. On this basis, the robust generalized quantiles are proposed and discussed. The robust expectiles with two specific penalization functions $\varphi_{1}$ and $\varphi_{2}$ are further considered respectively. The robust expectiles with $\varphi_{1}$ are proved to be coherent risk measures, and the dual representation theorems are established. In addition, the effect of penalization functions on the robust expectiles and its comparison with expectiles are examined and simulated numerically.

Date: 2023-04
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2304.04396 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2304.04396

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2304.04396