Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment
Chendi Ni,
Yuying Li and
Peter A. Forsyth
Papers from arXiv.org
Abstract:
Motivated by the current global high inflation scenario, we aim to discover a dynamic multi-period allocation strategy to optimally outperform a passive benchmark while adhering to a bounded leverage limit. To this end, we formulate an optimal control problem to outperform a benchmark portfolio throughout the investment horizon. Assuming the asset prices follow the jump-diffusion model during high inflation periods, we first establish a closed-form solution for the optimal strategy that outperforms a passive strategy under the cumulative quadratic tracking difference (CD) objective, assuming continuous trading and no bankruptcy. To obtain strategies under the bounded leverage constraint among other realistic constraints, we then propose a novel leverage-feasible neural network (LFNN) to represent control, which converts the original constrained optimization problem into an unconstrained optimization problem that is computationally feasible with standard optimization methods. We establish mathematically that the LFNN approximation can yield a solution that is arbitrarily close to the solution of the original optimal control problem with bounded leverage. We further apply the LFNN approach to a four-asset investment scenario with bootstrap resampled asset returns from the filtered high inflation regime data. The LFNN strategy is shown to consistently outperform the passive benchmark strategy by about 200 bps (median annualized return), with a greater than 90% probability of outperforming the benchmark at the end of the investment horizon.
Date: 2023-04, Revised 2023-05
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2304.05297 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2304.05297
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().