Coarsened Bayesian VARs -- Correcting BVARs for Incorrect Specification
Florian Huber and
Massimiliano Marcellino
Papers from arXiv.org
Abstract:
Model mis-specification in multivariate econometric models can strongly influence quantities of interest such as structural parameters, forecast distributions or responses to structural shocks, even more so if higher-order forecasts or responses are considered, due to parameter convolution. We propose a simple method for addressing these specification issues in the context of Bayesian VARs. Our method, called coarsened Bayesian VARs (cBVARs), replaces the exact likelihood with a coarsened likelihood that takes into account that the model might be mis-specified along important but unknown dimensions. Coupled with a conjugate prior, this results in a computationally simple model. As opposed to more flexible specifications, our approach avoids overfitting, is simple to implement and estimation is fast. The resulting cBVAR performs well in simulations for several types of mis-specification. Applied to US data, cBVARs improve point and density forecasts compared to standard BVARs, and lead to milder but more persistent negative effects of uncertainty shocks on output.
Date: 2023-04, Revised 2023-05
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2304.07856 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2304.07856
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).