Computing Volatility Surfaces using Generative Adversarial Networks with Minimal Arbitrage Violations
Andrew Na,
Meixin Zhang and
Justin Wan
Papers from arXiv.org
Abstract:
In this paper, we propose a generative adversarial network (GAN) approach for efficiently computing volatility surfaces. The idea is to make use of the special GAN neural architecture so that on one hand, we can learn volatility surfaces from training data and on the other hand, enforce no-arbitrage conditions. In particular, the generator network is assisted in training by a discriminator that evaluates whether the generated volatility matches the target distribution. Meanwhile, our framework trains the GAN network to satisfy the no-arbitrage constraints by introducing penalties as regularization terms. The proposed GAN model allows the use of shallow networks which results in much less computational costs. In our experiments, we demonstrate the performance of the proposed method by comparing with the state-of-the-art methods for computing implied and local volatility surfaces. We show that our GAN model can outperform artificial neural network (ANN) approaches in terms of accuracy and computational time.
Date: 2023-04, Revised 2023-12
New Economics Papers: this item is included in nep-big, nep-cmp, nep-des, nep-ecm, nep-net and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2304.13128 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2304.13128
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().