Assessing Text Mining and Technical Analyses on Forecasting Financial Time Series
Ali Lashgari
Papers from arXiv.org
Abstract:
Forecasting financial time series (FTS) is an essential field in finance and economics that anticipates market movements in financial markets. This paper investigates the accuracy of text mining and technical analyses in forecasting financial time series. It focuses on the S&P500 stock market index during the pandemic, which tracks the performance of the largest publicly traded companies in the US. The study compares two methods of forecasting the future price of the S&P500: text mining, which uses NLP techniques to extract meaningful insights from financial news, and technical analysis, which uses historical price and volume data to make predictions. The study examines the advantages and limitations of both methods and analyze their performance in predicting the S&P500. The FinBERT model outperforms other models in terms of S&P500 price prediction, as evidenced by its lower RMSE value, and has the potential to revolutionize financial analysis and prediction using financial news data. Keywords: ARIMA, BERT, FinBERT, Forecasting Financial Time Series, GARCH, LSTM, Technical Analysis, Text Mining JEL classifications: G4, C8
Date: 2023-04
New Economics Papers: this item is included in nep-big, nep-cmp, nep-des and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2304.14544 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2304.14544
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().