Using a Deep Learning Model to Simulate Human Stock Trader's Methods of Chart Analysis
Sungwoo Kang and
Jong-Kook Kim
Papers from arXiv.org
Abstract:
Despite the efficient market hypothesis, many studies suggest the existence of inefficiencies in the stock market leading to the development of techniques to gain above-market returns. Systematic trading has undergone significant advances in recent decades with deep learning schemes emerging as a powerful tool for analyzing and predicting market behavior. In this paper, a method is proposed that is inspired by how professional technical analysts trade. This scheme looks at stock prices of the previous 600 days and predicts whether the stock price will rise or fall 10% or 20% within the next D days. The proposed method uses the Resnet's (a deep learning model) skip connections and logits to increase the probability of the prediction. The model was trained and tested using historical data from both the Korea and US stock markets. The backtest is done using the data from 2020 to 2022. Using the proposed method for the Korea market it gave return of 75.36% having Sharpe ratio of 1.57, which far exceeds the market return by 36% and 0.61, respectively. On the US market it gives total return of 27.17% with Sharpe ratio of 0.61, which outperforms other benchmarks such as NASDAQ, S&P500, DOW JONES index by 17.69% and 0.27, respectively.
Date: 2023-04, Revised 2024-04
New Economics Papers: this item is included in nep-big, nep-cmp, nep-des, nep-fmk and nep-mst
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2304.14870 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2304.14870
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().