EconPapers    
Economics at your fingertips  
 

The geometry of financial institutions -- Wasserstein clustering of financial data

Lorenz Riess, Mathias Beiglb\"ock, Johannes Temme, Andreas Wolf and Julio Backhoff

Papers from arXiv.org

Abstract: The increasing availability of granular and big data on various objects of interest has made it necessary to develop methods for condensing this information into a representative and intelligible map. Financial regulation is a field that exemplifies this need, as regulators require diverse and often highly granular data from financial institutions to monitor and assess their activities. However, processing and analyzing such data can be a daunting task, especially given the challenges of dealing with missing values and identifying clusters based on specific features. To address these challenges, we propose a variant of Lloyd's algorithm that applies to probability distributions and uses generalized Wasserstein barycenters to construct a metric space which represents given data on various objects in condensed form. By applying our method to the financial regulation context, we demonstrate its usefulness in dealing with the specific challenges faced by regulators in this domain. We believe that our approach can also be applied more generally to other fields where large and complex data sets need to be represented in concise form.

Date: 2023-05
New Economics Papers: this item is included in nep-des
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2305.03565 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2305.03565

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2305.03565