Does Principal Component Analysis Preserve the Sparsity in Sparse Weak Factor Models?
Jie Wei and
Yonghui Zhang
Papers from arXiv.org
Abstract:
This paper studies the principal component (PC) method-based estimation of weak factor models with sparse loadings. We uncover an intrinsic near-sparsity preservation property for the PC estimators of loadings, which comes from the approximately upper triangular (block) structure of the rotation matrix. It implies an asymmetric relationship among factors: the rotated loadings for a stronger factor can be contaminated by those from a weaker one, but the loadings for a weaker factor is almost free of the impact of those from a stronger one. More importantly, the finding implies that there is no need to use complicated penalties to sparsify the loading estimators. Instead, we adopt a simple screening method to recover the sparsity and construct estimators for various factor strengths. In addition, for sparse weak factor models, we provide a singular value thresholding-based approach to determine the number of factors and establish uniform convergence rates for PC estimators, which complement Bai and Ng (2023). The accuracy and efficiency of the proposed estimators are investigated via Monte Carlo simulations. The application to the FRED-QD dataset reveals the underlying factor strengths and loading sparsity as well as their dynamic features.
Date: 2023-05, Revised 2024-11
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-mac
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2305.05934 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2305.05934
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().