Efficient Semiparametric Estimation of Average Treatment Effects Under Covariate Adaptive Randomization
Ahnaf Rafi
Papers from arXiv.org
Abstract:
Experiments that use covariate adaptive randomization (CAR) are commonplace in applied economics and other fields. In such experiments, the experimenter first stratifies the sample according to observed baseline covariates and then assigns treatment randomly within these strata so as to achieve balance according to pre-specified stratum-specific target assignment proportions. In this paper, we compute the semiparametric efficiency bound for estimating the average treatment effect (ATE) in such experiments with binary treatments allowing for the class of CAR procedures considered in Bugni, Canay, and Shaikh (2018, 2019). This is a broad class of procedures and is motivated by those used in practice. The stratum-specific target proportions play the role of the propensity score conditional on all baseline covariates (and not just the strata) in these experiments. Thus, the efficiency bound is a special case of the bound in Hahn (1998), but conditional on all baseline covariates. Additionally, this efficiency bound is shown to be achievable under the same conditions as those used to derive the bound by using a cross-fitted Nadaraya-Watson kernel estimator to form nonparametric regression adjustments.
Date: 2023-05
New Economics Papers: this item is included in nep-ecm and nep-exp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2305.08340 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2305.08340
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().