Semiparametrically Optimal Cointegration Test
Bo Zhou
Papers from arXiv.org
Abstract:
This paper aims to address the issue of semiparametric efficiency for cointegration rank testing in finite-order vector autoregressive models, where the innovation distribution is considered an infinite-dimensional nuisance parameter. Our asymptotic analysis relies on Le Cam's theory of limit experiment, which in this context takes the form of Locally Asymptotically Brownian Functional (LABF). By leveraging the structural version of LABF, an Ornstein-Uhlenbeck experiment, we develop the asymptotic power envelopes of asymptotically invariant tests for both cases with and without a time trend. We propose feasible tests based on a nonparametrically estimated density and demonstrate that their power can achieve the semiparametric power envelopes, making them semiparametrically optimal. We validate the theoretical results through large-sample simulations and illustrate satisfactory size control and excellent power performance of our tests under small samples. In both cases with and without time trend, we show that a remarkable amount of additional power can be obtained from non-Gaussian distributions.
Date: 2023-05
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2305.08880 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2305.08880
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().