EconPapers    
Economics at your fingertips  
 

Adapting to Misspecification

Timothy B. Armstrong, Patrick Kline and Liyang Sun

Papers from arXiv.org

Abstract: Empirical research typically involves a robustness-efficiency tradeoff. A researcher seeking to estimate a scalar parameter can invoke strong assumptions to motivate a restricted estimator that is precise but may be heavily biased, or they can relax some of these assumptions to motivate a more robust, but variable, unrestricted estimator. When a bound on the bias of the restricted estimator is available, it is optimal to shrink the unrestricted estimator towards the restricted estimator. For settings where a bound on the bias of the restricted estimator is unknown, we propose adaptive estimators that minimize the percentage increase in worst case risk relative to an oracle that knows the bound. We show that adaptive estimators solve a weighted convex minimax problem and provide lookup tables facilitating their rapid computation. Revisiting some well known empirical studies where questions of model specification arise, we examine the advantages of adapting to -- rather than testing for -- misspecification.

Date: 2023-05, Revised 2024-08
New Economics Papers: this item is included in nep-ecm and nep-mfd
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2305.14265 Latest version (application/pdf)

Related works:
Working Paper: Adapting to misspecification (2024) Downloads
Working Paper: Adapting to Misspecification (2024) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2305.14265

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:2305.14265