On random number generators and practical market efficiency
Ben Moews
Papers from arXiv.org
Abstract:
Modern mainstream financial theory is underpinned by the efficient market hypothesis, which posits the rapid incorporation of relevant information into asset pricing. Limited prior studies in the operational research literature have investigated tests designed for random number generators to check for these informational efficiencies. Treating binary daily returns as a hardware random number generator analogue, tests of overlapping permutations have indicated that these time series feature idiosyncratic recurrent patterns. Contrary to prior studies, we split our analysis into two streams at the annual and company level, and investigate longer-term efficiency over a larger time frame for Nasdaq-listed public companies to diminish the effects of trading noise and allow the market to realistically digest new information. Our results demonstrate that information efficiency varies across years and reflects large-scale market impacts such as financial crises. We also show the proximity to results of a well-tested pseudo-random number generator, discuss the distinction between theoretical and practical market efficiency, and find that the statistical qualification of stock-separated returns in support of the efficient market hypothesis is dependent on the driving factor of small inefficient subsets that skew market assessments.
Date: 2023-05, Revised 2023-07
New Economics Papers: this item is included in nep-fmk and nep-mfd
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2305.17419 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2305.17419
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().