Generalized Autoregressive Score Trees and Forests
Andrew Patton and
Yasin Simsek
Papers from arXiv.org
Abstract:
We propose methods to improve the forecasts from generalized autoregressive score (GAS) models (Creal et. al, 2013; Harvey, 2013) by localizing their parameters using decision trees and random forests. These methods avoid the curse of dimensionality faced by kernel-based approaches, and allow one to draw on information from multiple state variables simultaneously. We apply the new models to four distinct empirical analyses, and in all applications the proposed new methods significantly outperform the baseline GAS model. In our applications to stock return volatility and density prediction, the optimal GAS tree model reveals a leverage effect and a variance risk premium effect. Our study of stock-bond dependence finds evidence of a flight-to-quality effect in the optimal GAS forest forecasts, while our analysis of high-frequency trade durations uncovers a volume-volatility effect.
Date: 2023-05
New Economics Papers: this item is included in nep-big, nep-ecm, nep-ets, nep-mfd and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2305.18991 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2305.18991
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().