From elephant to goldfish (and back): memory in stochastic Volterra processes
Ofelia Bonesini,
Giorgia Callegaro,
Martino Grasselli and
Gilles Pag\`es
Papers from arXiv.org
Abstract:
We propose a new theoretical framework that exploits convolution kernels to transform a Volterra path-dependent (non-Markovian) stochastic process into a standard (Markovian) diffusion process. This transformation is achieved by embedding a Markovian "memory process" within the dynamics of the non-Markovian process. We discuss existence and path-wise regularity of solutions for the stochastic Volterra equations introduced and we provide a financial application to volatility modeling. We also propose a numerical scheme for simulating the processes. The numerical scheme exhibits a strong convergence rate of 1/2, which is independent of the roughness parameter of the volatility process. This is a significant improvement compared to Euler schemes used in similar models. We propose a new theoretical framework that exploits convolution kernels to transform a Volterra path-dependent (non-Markovian) stochastic process into a standard (Markovian) diffusion process. This transformation is achieved by embedding a Markovian "memory process" (the goldfish) within the dynamics of the non-Markovian process (the elephant). Most notably, it is also possible to go back, i.e., the transformation is reversible. We discuss existence and path-wise regularity of solutions for the stochastic Volterra equations introduced and we propose a numerical scheme for simulating the processes, which exhibits a remarkable convergence rate of $1/2$. In particular, in the fractional kernel case, the strong convergence rate is independent of the roughness parameter, which is a positive novelty in contrast with what happens in the available Euler schemes in the literature in rough volatility models.
Date: 2023-06, Revised 2025-01
New Economics Papers: this item is included in nep-mfd
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2306.02708 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2306.02708
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().