Network-based Representations and Dynamic Discrete Choice Models for Multiple Discrete Choice Analysis
Hung Tran and
Tien Mai
Papers from arXiv.org
Abstract:
In many choice modeling applications, people demand is frequently characterized as multiple discrete, which means that people choose multiple items simultaneously. The analysis and prediction of people behavior in multiple discrete choice situations pose several challenges. In this paper, to address this, we propose a random utility maximization (RUM) based model that considers each subset of choice alternatives as a composite alternative, where individuals choose a subset according to the RUM framework. While this approach offers a natural and intuitive modeling approach for multiple-choice analysis, the large number of subsets of choices in the formulation makes its estimation and application intractable. To overcome this challenge, we introduce directed acyclic graph (DAG) based representations of choices where each node of the DAG is associated with an elemental alternative and additional information such that the number of selected elemental alternatives. Our innovation is to show that the multi-choice model is equivalent to a recursive route choice model on the DAG, leading to the development of new efficient estimation algorithms based on dynamic programming. In addition, the DAG representations enable us to bring some advanced route choice models to capture the correlation between subset choice alternatives. Numerical experiments based on synthetic and real datasets show many advantages of our modeling approach and the proposed estimation algorithms.
Date: 2023-06
New Economics Papers: this item is included in nep-dcm, nep-ecm and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2306.04606 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2306.04606
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().