Evaluating and Incentivizing Diverse Data Contributions in Collaborative Learning
Baihe Huang,
Sai Praneeth Karimireddy and
Michael I. Jordan
Papers from arXiv.org
Abstract:
For a federated learning model to perform well, it is crucial to have a diverse and representative dataset. However, the data contributors may only be concerned with the performance on a specific subset of the population, which may not reflect the diversity of the wider population. This creates a tension between the principal (the FL platform designer) who cares about global performance and the agents (the data collectors) who care about local performance. In this work, we formulate this tension as a game between the principal and multiple agents, and focus on the linear experiment design problem to formally study their interaction. We show that the statistical criterion used to quantify the diversity of the data, as well as the choice of the federated learning algorithm used, has a significant effect on the resulting equilibrium. We leverage this to design simple optimal federated learning mechanisms that encourage data collectors to contribute data representative of the global population, thereby maximizing global performance.
Date: 2023-06
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2306.05592 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2306.05592
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().