EconPapers    
Economics at your fingertips  
 

Localized Neural Network Modelling of Time Series: A Case Study on US Monetary Policy

Jiti Gao, Fei Liu, Bin Peng and Yanrong Yang

Papers from arXiv.org

Abstract: In this paper, we investigate a semiparametric regression model under the context of treatment effects via a localized neural network (LNN) approach. Due to a vast number of parameters involved, we reduce the number of effective parameters by (i) exploring the use of identification restrictions; and (ii) adopting a variable selection method based on the group-LASSO technique. Subsequently, we derive the corresponding estimation theory and propose a dependent wild bootstrap procedure to construct valid inferences accounting for the dependence of data. Finally, we validate our theoretical findings through extensive numerical studies. In an empirical study, we revisit the impacts of a tightening monetary policy action on a variety of economic variables, including short-/long-term interest rate, inflation, unemployment rate, industrial price and equity return via the newly proposed framework using a monthly dataset of the US.

Date: 2023-06, Revised 2024-07
New Economics Papers: this item is included in nep-big, nep-cmp and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2306.05593 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2306.05593

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2306.05593