Kernel Choice Matters for Boundary Inference Using Local Polynomial Density: With Application to Manipulation Testing
Shunsuke Imai and
Yuta Okamoto
Papers from arXiv.org
Abstract:
The local polynomial density (LPD) estimator has been a useful tool for inference concerning boundary points of density functions. While it is commonly believed that kernel selection is not crucial for the performance of kernel-based estimators, this paper argues that this does not hold true for LPD estimators at boundary points. We find that the commonly used kernels with compact support lead to larger asymptotic and finite-sample variances. Furthermore, we present theoretical and numerical evidence showing that such unfavorable variance properties negatively affect the performance of manipulation testing in regression discontinuity designs, which typically suffer from low power. Notably, we demonstrate that these issues of increased variance and reduced power can be significantly improved just by using a kernel function with unbounded support. We recommend the use of the spline-type kernel (the Laplace density) and illustrate its superior performance.
Date: 2023-06, Revised 2024-01
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2306.07619 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2306.07619
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().