Machine Learning for Zombie Hunting: Predicting Distress from Firms' Accounts and Missing Values
Falco J. Bargagli-Stoffi,
Fabio Incerti,
Massimo Riccaboni and
Armando Rungi
Papers from arXiv.org
Abstract:
In this contribution, we propose machine learning techniques to predict zombie firms. First, we derive the risk of failure by training and testing our algorithms on disclosed financial information and non-random missing values of 304,906 firms active in Italy from 2008 to 2017. Then, we spot the highest financial distress conditional on predictions that lies above a threshold for which a combination of false positive rate (false prediction of firm failure) and false negative rate (false prediction of active firms) is minimized. Therefore, we identify zombies as firms that persist in a state of financial distress, i.e., their forecasts fall into the risk category above the threshold for at least three consecutive years. For our purpose, we implement a gradient boosting algorithm (XGBoost) that exploits information about missing values. The inclusion of missing values in our predictive model is crucial because patterns of undisclosed accounts are correlated with firm failure. Finally, we show that our preferred machine learning algorithm outperforms (i) proxy models such as Z-scores and the Distance-to-Default, (ii) traditional econometric methods, and (iii) other widely used machine learning techniques. We provide evidence that zombies are on average less productive and smaller, and that they tend to increase in times of crisis. Finally, we argue that our application can help financial institutions and public authorities design evidence-based policies-e.g., optimal bankruptcy laws and information disclosure policies.
Date: 2023-06
New Economics Papers: this item is included in nep-cmp and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2306.08165 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2306.08165
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().