EconPapers    
Economics at your fingertips  
 

Modelling and Forecasting Macroeconomic Risk with Time Varying Skewness Stochastic Volatility Models

Andrea Renzetti

Papers from arXiv.org

Abstract: Monitoring downside risk and upside risk to the key macroeconomic indicators is critical for effective policymaking aimed at maintaining economic stability. In this paper I propose a parametric framework for modelling and forecasting macroeconomic risk based on stochastic volatility models with Skew-Normal and Skew-t shocks featuring time varying skewness. Exploiting a mixture stochastic representation of the Skew-Normal and Skew-t random variables, in the paper I develop efficient posterior simulation samplers for Bayesian estimation of both univariate and VAR models of this type. In an application, I use the models to predict downside risk to GDP growth in the US and I show that these models represent a competitive alternative to semi-parametric approaches such as quantile regression. Finally, estimating a medium scale VAR on US data I show that time varying skewness is a relevant feature of macroeconomic and financial shocks.

Date: 2023-06, Revised 2023-11
New Economics Papers: this item is included in nep-ecm, nep-ets, nep-fdg and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2306.09287 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2306.09287

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2306.09287