EconPapers    
Economics at your fingertips  
 

Quantum computer based Feature Selection in Machine Learning

Gerhard Hellstern, Vanessa Dehn and Martin Zaefferer

Papers from arXiv.org

Abstract: The problem of selecting an appropriate number of features in supervised learning problems is investigated in this paper. Starting with common methods in machine learning, we treat the feature selection task as a quadratic unconstrained optimization problem (QUBO), which can be tackled with classical numerical methods as well as within a quantum computing framework. We compare the different results in small-sized problem setups. According to the results of our study, whether the QUBO method outperforms other feature selection methods depends on the data set. In an extension to a larger data set with 27 features, we compare the convergence behavior of the QUBO methods via quantum computing with classical stochastic optimization methods. Due to persisting error rates, the classical stochastic optimization methods are still superior.

Date: 2023-06
New Economics Papers: this item is included in nep-big and nep-cmp
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2306.10591 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2306.10591

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2306.10591