Statistical Tests for Replacing Human Decision Makers with Algorithms
Kai Feng,
Han Hong,
Ke Tang and
Jingyuan Wang
Papers from arXiv.org
Abstract:
This paper proposes a statistical framework of using artificial intelligence to improve human decision making. The performance of each human decision maker is benchmarked against that of machine predictions. We replace the diagnoses made by a subset of the decision makers with the recommendation from the machine learning algorithm. We apply both a heuristic frequentist approach and a Bayesian posterior loss function approach to abnormal birth detection using a nationwide dataset of doctor diagnoses from prepregnancy checkups of reproductive age couples and pregnancy outcomes. We find that our algorithm on a test dataset results in a higher overall true positive rate and a lower false positive rate than the diagnoses made by doctors only.
Date: 2023-06, Revised 2024-12
New Economics Papers: this item is included in nep-ain, nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2306.11689 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2306.11689
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().