Fair integer programming under dichotomous and cardinal preferences
Tom Demeulemeester,
Dries Goossens,
Ben Hermans and
Roel Leus
Papers from arXiv.org
Abstract:
One cannot make truly fair decisions using integer linear programs unless one controls the selection probabilities of the (possibly many) optimal solutions. For this purpose, we propose a unified framework when binary decision variables represent agents with dichotomous preferences, who only care about whether they are selected in the final solution. We develop several general-purpose algorithms to fairly select optimal solutions, for example, by maximizing the Nash product or the minimum selection probability, or by using a random ordering of the agents as a selection criterion (Random Serial Dictatorship). We also discuss in detail how to extend the proposed methods when agents have cardinal preferences. As such, we embed the black-box procedure of solving an integer linear program into a framework that is explainable from start to finish. Lastly, we evaluate the proposed methods on two specific applications, namely kidney exchange (dichotomous preferences), and the scheduling problem of minimizing total tardiness on a single machine (cardinal preferences). We find that while the methods maximizing the Nash product or the minimum selection probability outperform the other methods on the evaluated welfare criteria, methods such as Random Serial Dictatorship perform reasonably well in computation times that are similar to those of finding a single optimal solution.
Date: 2023-06, Revised 2024-04
New Economics Papers: this item is included in nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2306.13383 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2306.13383
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().