Hybrid unadjusted Langevin methods for high-dimensional latent variable models
Ruben Loaiza-Maya,
Didier Nibbering and
Dan Zhu
Papers from arXiv.org
Abstract:
The exact estimation of latent variable models with big data is known to be challenging. The latents have to be integrated out numerically, and the dimension of the latent variables increases with the sample size. This paper develops a novel approximate Bayesian method based on the Langevin diffusion process. The method employs the Fisher identity to integrate out the latent variables, which makes it accurate and computationally feasible when applied to big data. In contrast to other approximate estimation methods, it does not require the choice of a parametric distribution for the unknowns, which often leads to inaccuracies. In an empirical discrete choice example with a million observations, the proposed method accurately estimates the posterior choice probabilities using only 2% of the computation time of exact MCMC.
Date: 2023-06
New Economics Papers: this item is included in nep-dcm and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2306.14445 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2306.14445
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().