EconPapers    
Economics at your fingertips  
 

Continuous-time q-learning for mean-field control problems

Xiaoli Wei and Xiang Yu

Papers from arXiv.org

Abstract: This paper studies the q-learning, recently coined as the continuous time counterpart of Q-learning by Jia and Zhou (2023), for continuous time Mckean-Vlasov control problems in the setting of entropy-regularized reinforcement learning. In contrast to the single agent's control problem in Jia and Zhou (2023), the mean-field interaction of agents renders the definition of the q-function more subtle, for which we reveal that two distinct q-functions naturally arise: (i) the integrated q-function (denoted by $q$) as the first-order approximation of the integrated Q-function introduced in Gu, Guo, Wei and Xu (2023), which can be learnt by a weak martingale condition involving test policies; and (ii) the essential q-function (denoted by $q_e$) that is employed in the policy improvement iterations. We show that two q-functions are related via an integral representation under all test policies. Based on the weak martingale condition and our proposed searching method of test policies, some model-free learning algorithms are devised. In two examples, one in LQ control framework and one beyond LQ control framework, we can obtain the exact parameterization of the optimal value function and q-functions and illustrate our algorithms with simulation experiments.

Date: 2023-06, Revised 2024-11
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2306.16208 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2306.16208

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2306.16208