EconPapers    
Economics at your fingertips  
 

High-Dimensional Canonical Correlation Analysis

Anna Bykhovskaya and Vadim Gorin

Papers from arXiv.org

Abstract: This paper studies high-dimensional canonical correlation analysis (CCA) with an emphasis on the vectors that define canonical variables. The paper shows that when two dimensions of data grow to infinity jointly and proportionally, the classical CCA procedure for estimating those vectors fails to deliver a consistent estimate. This provides the first result on the impossibility of identification of canonical variables in the CCA procedure when all dimensions are large. As a countermeasure, the paper derives the magnitude of the estimation error, which can be used in practice to assess the precision of CCA estimates. Applications of the results to cyclical vs. non-cyclical stocks and to a limestone grassland data set are provided.

Date: 2023-06, Revised 2025-01
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2306.16393 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2306.16393

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2306.16393