A maximal inequality for local empirical processes under weak dependence
Luis Alvarez and
Cristine Pinto
Papers from arXiv.org
Abstract:
We introduce a maximal inequality for a local empirical process under strongly mixing data. Local empirical processes are defined as the (local) averages $\frac{1}{nh}\sum_{i=1}^n \mathbf{1}\{x - h \leq X_i \leq x+h\}f(Z_i)$, where $f$ belongs to a class of functions, $x \in \mathbb{R}$ and $h > 0$ is a bandwidth. Our nonasymptotic bounds control estimation error uniformly over the function class, evaluation point $x$ and bandwidth $h$. They are also general enough to accomodate function classes whose complexity increases with $n$. As an application, we apply our bounds to function classes that exhibit polynomial decay in their uniform covering numbers. When specialized to the problem of kernel density estimation, our bounds reveal that, under weak dependence with exponential decay, these estimators achieve the same (up to a logarithmic factor) sharp uniform-in-bandwidth rates derived in the iid setting by \cite{Einmahl2005}.
Date: 2023-07
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2307.01328 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2307.01328
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().