On Unified Adaptive Portfolio Management
Chi-Lin Li and
Chung-Han Hsieh
Papers from arXiv.org
Abstract:
This paper introduces a unified framework for adaptive portfolio management, integrating dynamic Black-Litterman (BL) optimization with the general factor model, Elastic Net regression, and mean-variance portfolio optimization, which allows us to generate investors views and mitigate potential estimation errors systematically. Specifically, we propose an innovative dynamic sliding window algorithm to respond to the constantly changing market conditions. This algorithm allows for the flexible window size adjustment based on market volatility, generating robust estimates for factor modeling, time-varying BL estimations, and optimal portfolio weights. Through extensive ten-year empirical studies using the top 100 capitalized assets in the S&P 500 index, accounting for turnover transaction costs, we demonstrate that this combined approach leads to computational advantages and promising trading performances.
Date: 2023-07, Revised 2024-04
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2307.03391 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2307.03391
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().