Critical comparisons on deep learning approaches for foreign exchange rate prediction
Zhu Bangyuan
Papers from arXiv.org
Abstract:
In a natural market environment, the price prediction model needs to be updated in real time according to the data obtained by the system to ensure the accuracy of the prediction. In order to improve the user experience of the system, the price prediction function needs to use the fastest training model and the model prediction fitting effect of the best network as a predictive model. We conduct research on the fundamental theories of RNN, LSTM, and BP neural networks, analyse their respective characteristics, and discuss their advantages and disadvantages to provide a reference for the selection of price-prediction models.
Date: 2023-07
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2307.06600 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2307.06600
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().